Purification of platelets from whole blood and their removal from blood leukocyte preparations

- OptiPrep™ is a sterile 60% (w/v) solution of ioxanol in water, density = 1.32 g/ml
- This Mini-Review principally provides (in Section 2) a bibliography of all those papers reporting the use of OptiPrep™ in the purification of platelets from both human and rodent blood and for their removal from leukocyte preparations. Section 1 briefly summarizes the advantages of using the OptiPrep™ methodology.

1. The OptiPrep™ technology

The routine method for the purification of platelets from whole blood is to centrifuge the blood at a g-force that will sediment the erythrocytes and leukocytes, while leaving the smaller platelets suspended in the plasma supernatant. While this is a simple concept it is technically very difficult; if the g-force is high enough to sediment all of the erythrocytes and leukocytes then many of the platelets will also be in the cell pellet; if it is sufficiently low to prevent the majority of platelets from pelleting then many of less dense leukocytes will also remain in the plasma supernatant. As a result the procedure needs to be repeated several times to recover more of the platelets from the pellet and to remove more leukocytes from the supernatant. It becomes a very tedious process.

In the one-step OptiPrep™ method, OptiPrep™ is diluted with a buffered saline to produce a solution of density 1.063 g/ml (lower than all of the leukocytes); an equal volume of whole blood is layered over it and centrifuged at 350 g for 15 min. The procedure is summarized in Figure 1. Typically 5 ml each of blood and the density barrier are used in a standard 15 ml tube. The separation is based on the much lower sedimentation rate of the platelets. The yields are approx. 90-92%.

The method is equally effective for removing platelets from previously purified leukocyte fractions, particularly human peripheral blood mononuclear cells (PBMCs) produced by centripetalation of blood over a density barrier of approx. 1.077 g/ml (e.g. Lymphoprep™ or Nycoprep™ 1.077). A common method of removing the platelets is to dilute the cell harvest with saline and to use the lowest feasible g-force to pellet the cells selectively (usually about 300-350 g for 5-10 min). This is then repeated at least twice more—like the preparation of platelets by differential centrifugation (see above) this is inefficient, tedious and detrimental to the cells. Instead the platelets can be removed in a single step by layering the diluted harvest over the 1.063 g/ml barrier.

The method is described in OptiPrep™ Application Sheet (C12); it may be accessed from the Index of the “Mammalian and non-mammalian cells” file on the OptiPrep™ Applications flash-drive or from the following website: www.axis-shield-density-gradient-media.com (click on “Methodology”)

2. Bibliography
- The references are listed in Section 2a alphabetically by first author; multiple first author papers are listed chronologically.
- The index in Section 2b lists alphabetically the species and principal area of analysis reported in each paper; the numbers against each entry indicate the relevant reference numbers from Section 2a.
2a. Reference list

2b. Reference index

Canine platelets
- Isolation 47
- Removal from dendritic cells 13

Human platelets
- Acetylcholinesterase expression 18
- Activation
 - CD40-L release 37
 - Pregnancy-related hypertension 07
 - Retinal vascular repair 16
- α2-Adrenoreceptors
 - Depression, in 45
- Aggregation
 - Calmodulin-dependent kinase/kinase β signal 40
 - Vasoactive agents, control of 16, 17
- AMP-activated protein kinase 41
- Bacterial interactions 03
- Calumenin
 - Thrombospondin-1 binding 26
- Carbon monoxide
 - Serine phosphorylation of VASP 17
- Carcinomas 15, 27
- Coagulation factor 22
- Community-acquired pneumonia
 - Antioxidant responses 33
 - Thrombocytosis 32
- Dengue virus haemorrhagic fever
 - Monocytosis 38
 - Thrombocytopenia 38
- Diabetic patients
 - Serine phosphorylation of VASP 17
- Exosomes 01
- Factor VIII
 - Binding studies 25, 44
 - C1 domain amino acid residues, effects of 34
- Guanyl cyclase/cGMP signaling
Von Willebrand factor/ristocetin mediated
HPA-1a antigen
Effects on T-cells
ILK-PINCH-Parvin complex signaling
Imidazoline receptors
Depression, in
Metabolic syndrome
Methodology
CD41 determined purity
Non-activated
Morphological retention
Nitric oxide
Serine phosphorylation of VASP
Synthase (endothelial and inducible)
Proteomics
Removal from
Dendritic cells
Monocytes
Peripheral blood cells
Retinal vascular repair
Platelet aggregation
Serine residue, differential phosphorylation of
Vasodilator-stimulated phosphoprotein (VASP)
α-Synuclein
Paucity in platelets
Thrombin stimulation
Calumenin release
Thrombocytopenia
Dengue virus haemorrhagic fever
Neonatal alloimmune
Primate bone marrow
Dengue virus
Rodent platelets
Aggregation
Acetylcholinesterase elimination
Carbon monoxide, reduction in allografts
Wound lesion treatments
Platelet depletion
Platelet destruction in vivo
Platelet survival
Thrombocytopenia model

Mini-Review MC03: 4th edition, September 2017

Alere Technologies AS
Axis-Shield Density Gradient Media
is a brand of Alere Technologies AS